Understanding reactivity descriptors in ab initio design of a heterogeneous catalyst using machine learning approaches

dc.contributor.authorAmrish Kumar
dc.date.accessioned2024-12-13T09:04:19Z
dc.date.issued2024-05-01
dc.identifier.urihttp://ir.iitd.ac.in/handle/123456789/5533
dc.language.isoen
dc.publisherIIT Delhi
dc.subjectGradient boosting regression | Non-oxidative dehydrogenation | Catalytic activity | Microkinetic modelling | Artificial neural network | Reaction mechanisms
dc.titleUnderstanding reactivity descriptors in ab initio design of a heterogeneous catalyst using machine learning approaches
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
TH-7662.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: